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Abstract—This note corrects expressions given by Cleary [1] for fluid mass source and dipole solutions in linear
fluid infiltrated porous elastic solids, The corrected expressions reveal that the stress and displacement fields due
toasuddenly applied point force comprise atime independent portion thatis the classical elasticity solutionbased
onthe undrained (short-time) moduli, and a time dependent portion thatis the solution for a continuous fluid mass
dipole. Asacoroliary, the time dependent functions entering the point force solutioncanbe obtained froma single
function that enters the solution for displacements due to a fluid mass source.

Cleary[1] has established the three dimensional fundamental solutions for a linear elastic
fluid-infiltrated porous solid and has outlined their use in modeling embedded regions of
inelasticity. However, because of a minor algebraic error in the expressions given by Cleary[1]
for the stress field due to point injection of fluid mass at a constant rate, the full extent of the
correspondence between point force and fluid mass source solutions is not revealed. This note
corrects the expressions given by Cleary[1]} and in so-doing fully exposes this correspondence.

To obtain the solutions for fluid mass sources, Cleary[1] uses the procedure of Rice and
Cleary[2] for spherically symmetric problems. For injection of fluid mass at the origin at a
constant rate g, o, and oy the only nonzero stress components in polar coordinates, are as
follows:
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The notation follows that used by Cleary[1] (also [2]): r is the radial coordinate; p, is the fluid
mass density;  is a permeability; ¢ = rl(ct)"?, where ¢ is time and c is the diffusivity; and
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is the complementary error function. The dimensionless constant  can be expressed as
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where » and v, are the values of Poisson’s ratio for drained (long-time) and undrained
(short-time) response, respectively and B is the magnitude of the ratio of pore pressure change
to mean normal stress during undrained conditions. It will also be convenient to use the
following expression for the diffusivity ¢:
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where u is the shear modulus. The stress (1) is expressed in Cartesian components as
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where §; is the Kronecker delta and
h(¢) = 2\/ 17’ e " dn. (4)

Equation (la) agrees with the first of eqns (39a) in {1] but in Cleary’s expression for the
“hoop stress” oy, the factor of one-half multipiying erfc (¢2) is omitted. Consequently, the
Cartesian component form given by (39b) in [1] is incorrect and, because this expression is used
to obtain the stress field of a fluid mass dipole, the dipole stress field given in Cleary’s equation
(43) is also incorrect. For compieteness, the expressions for the alteration of pore fluid pressure

p (given correctly by equation (38) in [1]) and the displacement components are recorded
below:
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The solution for fluid mass dipoles can be obtained from the source solutions by the usual
technique: if a particular field quantity is given by gF(x, ¢) for a source of strength g, then the
corresponding quantity for a dipole of strength g with axis in the direction &, is

Fdipole(xa t) == X, F(x t) (8)
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Using g, to denote gh, and applying the operation (8) to (5), (6) and (3) yield the following
expressions:
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where

21(&) = erfc (42) - 2¢7%h()
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Alternatively, the functions 2, and 3, can be expressed as follows in terms of u(¢):

26 =u(+u'(©)
2x(8) = u(é) = §u'(8).
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The expression for the stress field (11) corrects eqn (43) in [1]. It is noteworthy that this
solution is identical to that for a suddenly applied point force, with components P,” = — q./pok,
which acts only on the fluid phase (that is, a body force per unit volume of fluid P,F8(x)H(¢)
which acts only on the fluid phase; 8(x) is the three dimensional Dirac delta function and H(t)
is the unit step function).

As noted by Cleary(1], the pore fluid pressure p(x, ¢) in (9) minus its long time value (as
t->x, £-0 and h(0) =0) is the pore pressure due to a point force with components given by

P, = g.pl(ponc). (12)

(The point force can be regarded as a body force P,8(x)H () per unit volume of porous solid,
including fluid and solid phases.) The dipole stress and displacement field bear a similar
relationship to the point force solution, although, because of the error in the dipole stress field
given by Cleary[1], this relationship is not apparent in his paper. In particular, the displacement
and stress fields due to sudden application of a point force P, at the origin can be written as
follows:
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In each of (13) and (14) the first term is the time-independent classical elasticity solution based
on the undrained (short-time) elastic constants. This term gives the instantaneous response of
the porous medium to the suddenly applied point force. Noting (2) and comparing (10) and (11)
with (13) and (14) reveal that the second term in each of the latter equations is the response to a
continuous fluid mass dipole with components given by solving (12) for g,. A corollary of this
result is that the time dependence of the point force solution can be derived from the single
function u(£) (7) which arises in the solution for displacements due to a continuous fluid mass
source. As noted by Cleary, the dipole solution contributes no net force on any contour
surrounding the origin, and, as a consequence, the point force is equilibrated solely by the first
term of (14).

The arrangement of the point force solution in (13) and (14) may prove advantageous in the
construction of solutions to boundary Value problems and in simulation of zones of inelasticity,
as outlined by Cleary. Specifically, some simplification may result from the separation of the
solution into two components, one which is the solution to the classical elasticity equations with
undrained moduli and one which arises from a fluid mass source solution. However, the
difficulty in solving boundary value problems inevitably enters in the coupling introduced in the
boundary conditions (e.g. [2]) and it is unlikely that this complication can be avoided.

Acknowledgement—This work arose in connection with investigations supported by the Earthquake Hazards Reduction
Program of the U.S. Geological Survey through Contract No. INT 14-08-0001-19146 to the University of Illinois at
Urbana-Champaign.

REFERENCES

1. M. P. Cleary, Fundamental solutions for a fluid-saturated porous solid. Int. J. Solids Structures 13, 785-808 (1977).
2. J. R. Rice and M. P. Cleary, Some basic stress-diffusion solutions for fluid-saturated porous media with compressible
constituents. Rev. Geophys. Space Phys. 14, 227241 (1976).



